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Introduction 
 
Sub-seasonal and seasonal prediction of summer precipitation and screen-level temperature over 
mid-latitude land must rely on predictability associated with the slowly varying land boundary 
conditions, in particular root zone soil moisture.  Our goal is therefore to derive a realistic 
representation of global land surface conditions in order to initialize the General Circulation 
Model that produces the seasonal forecast.  This may be partly achieved by forcing a land surface 
model with observed fields of precipitation and radiation (rather than with the typically poor 
surface meteorology produced by the GCM) up to the start time of the forecast, and transforming 
the resulting land surface initial conditions to be consistent with the GCM’s climatology for 
forecast initialization.  Such a system is now in place for the seasonal forecasts produced at the 
NASA Global Modeling and Assimilation Office (GMAO). 
 
In addition to observations of land surface forcing fields (such as precipitation and radiation), 
there are limited satellite observations of land surface states, notably surface soil moisture.  Such 
state observations can be retrieved from satellite measurements of microwave radiation emitted 
by the land surface.  Land data assimilation techniques can be used to merge these satellite 
observations of land surface states with model-derived states, where the latter incorporate the 
information contained in the observed land surface forcings as well as our best knowledge of land 
surface dynamics as formulated in the land model.  Estimates of land surface conditions produced 
by land data assimilation should, if derived properly, optimally combine all available information.  
In practice, strong biases and large uncertainties in models and observations pose severe 
challenges to our ability to derive such estimates.  We demonstrate that despite the complications, 
estimates derived from data assimilation can improve our knowledge of soil moisture (Reichle 
and Koster, 2004b) and have the potential to improve seasonal forecasts. 
 
 



Sub-seasonal climate prediction over land 
 
In the tropics, skill in seasonal forecasting derives primarily from observations and predictions of 
sea surface temperature (SST) and their feedback onto the atmosphere.  Over mid-latitude land, 
SST forcing has limited impact on predictions of summer precipitation and surface temperature, 
but some predictability at sub-seasonal to seasonal time scales may derive from slowly varying 
land boundary conditions.  In particular, the memory associated with root zone soil moisture, in 
combination with feedback of soil moisture on precipitation through evaporation, may provide 
predictability at time scales from 2 weeks to 2 months (Koster et al., 2004a; Koster et al., 2004b). 
 
At the NASA-GMAO, near real-time seasonal forecasts are routinely produced with the GMAO 
CGCMv1, a fully coupled atmosphere-ocean-land general circulation model.  Since April 2004, 
we use realistic soil moisture and ground temperature initial conditions that are derived off-line 
using observed surface meteorological forcing data from the Global Land Data Assimilation 
System (GLDAS) (Rodell et al., 2003) for all 18 ensemble members.  Also since April 2004, 12 
out of 18 ensemble members are initialized with anomalies derived from atmospheric data 
assimilation systems at the National Center for Environmental Prediction (NCEP).  The initial 
atmospheric conditions of the remaining 6 ensemble members are taken from “AMIP”-style 
integrations that rely on SST only. 
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Figure 1.  Screen-level air temperature for Aug 2004 in North America: (a) CAMS observations 
(b) 9-member ensemble mean “AMIP” integration based on SST only (c) 18-member ensemble 
mean forecast initialized Aug 1, 2004 with anomalies from GLDAS land and NCEP atmosphere 
(d) same as (c) but initialized Jul 1, 2004. 
 
 



Figure 1 shows one- and two-month forecasts of screen-level temperature over North America for 
August 2004, along with validating observations from the Climate Analysis and Monitoring 
System (CAMS) at the Climate Prediction Center.  For comparison, a “forecast” that is based 
solely on SST is also shown.  It is taken out of a long-term “AMIP”-style integration of a 9-
member ensemble that uses observed SST at the ocean-atmosphere boundary but contains no 
observational information for the land or the atmosphere.  Because of the small number of real-
time forecasts produced this far, it is not yet possible to validate the skill in a statistically 
meaningful way.  However, Figure 1 clearly demonstrates the strong impact on the forecast of 
initializing the land surface (and the atmosphere) with more realistic land surface conditions 
when compared to the old system that relied solely on SST.  The more statistically complete 
hindcast experiment of Koster et al. (2004b) suggests increased skill associated with land 
initialization, skill that is independent of that from atmospheric initialization. 
 
 
Soil moisture data assimilation 
 
While there has been considerable progress in the methodological development of soil moisture 
data assimilation (Walker and Houser, 2001; Margulis, 2002; Reichle et al., 2002; Crow and 
Wood, 2003, Seuffert et al., 2003), there is little experience with the assimilation of a multi-year, 
global dataset of surface soil moisture retrievals.  Here, we assimilate global soil moisture 
retrievals from the Scanning Multichannel Microwave Radiometer (SMMR) into the NASA 
Catchment land surface model (Koster et al., 2000) for the period 1979-87.  Through validation 
against ground measurements, we demonstrate that assimilation of SMMR data yields improved 
soil moisture estimates – better than those obtained with the model or from the satellite alone. 
 
Owe et al. (2001) recently developed a novel retrieval algorithm for soil moisture from passive 
microwave measurements and produced a nine-year, global soil moisture dataset from Scanning 
Multichannel Microwave Radiometer (SMMR) observations for the period 1978-87 (De Jeu, 
2003).  For the period 1979-93, Berg et al. (2003) developed a high-quality, global dataset of 
surface meteorological fields based on reanalysis data and corrected with observations as much as 
possible.  This dataset is used to force the NASA Catchment land surface model.  Finally, 
ground-based soil moisture data for the SMMR time period are available for select locations in 
Eurasia and North America from the Global Soil Moisture Data Bank (GSMDB) (Robock et al., 
2000). 
 
These satellite, ground-based, and model soil moisture data are independent, and each has its own 
set of limitations.  State-of-the-art land surface models produce widely different soil moisture 
output even when integrated with identical meteorological forcing inputs (Entin et al., 1999).  
Errors in C-band surface soil moisture retrievals are generally high, and modest amounts of 
vegetation obscure the soil moisture signal, which in any case is limited to the top centimeter of 
the soil.  Ground-based measurements – used for validation – are sparse and not necessarily 
representative of large-scale soil moisture.  At this time, errors in global soil moisture observation 
and modeling are so large that there is no universally accepted climatology (Reichle et al., 2004).  
Consequently, we scale the satellite observations to the model’s climatology before assimilating 
the data into the model (Reichle and Koster, 2004a).  For seasonal climate prediction, knowledge 
of soil moisture anomalies is, in any case, more important than knowledge of absolute soil 
moisture. 
  
In a data assimilation system, the model-generated soil moisture is corrected toward the 
observational estimate, with the degree of correction determined by the levels of error associated 



with each.  The assimilation system used here is based on the Ensemble Kalman filter (EnKF) 
(Reichle et al., 2002).  The EnKF is well suited to the nonlinear and intermittent character of land 
surface processes.  The key feature of the EnKF is that error estimates of the model-generated 
results are dynamically derived from an ensemble of model integrations.  Each member of the 
ensemble experiences slightly perturbed instances of the observed precipitation fields 
(representing errors in the precipitation data) and is also subject to randomly generated noise that 
is directly added to the soil moisture states (representing errors in model physics and parameters).  
In this paper, we use the one-dimensional version of the EnKF.  Preliminary results with the 
three-dimensional EnKF (Reichle and Koster, 2003) show a further improvement in surface soil 
moisture but also some deficiencies in root zone soil moisture.  Calibration of the latter is very 
complex and work is still in progress. 
  
In the next section, we analyze “raw” time series of monthly mean soil moisture as well as 
anomaly time series.  The latter are obtained by subtracting the monthly climatology of each 
dataset (i.e., the average for each calendar month) from the raw time series.  In other words, the 
raw time series include the seasonal cycle, while the anomaly time series describe only deviations 
from the average seasonal cycle.  Our analysis will be focused on time series correlations between 
the various data sets rather than on root-mean-square errors, because there is not enough evidence 
about which climatology is more correct (Reichle et al., 2004). 
 
 
Results from global assimilation of SMMR soil moisture retrievals 
 
Clues about the global performance of the assimilation algorithm can be extracted from its 
innovations sequence (the difference between SMMR retrievals and their corresponding model 
forecasts during the assimilation integration).  If the filter is operating according to its underlying 
assumptions – that various linearizations hold, and that model and observation errors are 
uncorrelated and normally distributed – the sum of the model error covariance (diagnosed from 
the ensemble spread) and the measurement error covariance should equal the sample covariance 
of the innovations sequence.  In other words, we can easily check the assumptions underlying the 
assimilation process by checking whether the innovations sequence has the expected mean and 
variance (Reichle et al., 2002). 
 

 

 
Figure 2.  Variance of normalized innovations [-] (from Reichle and Koster, 2004b). 

 



 
Because of the bias reduction applied before the assimilation, the mean of the innovations is 
statistically indistinguishable from zero.  A supplemental analysis shows that not scaling the 
SMMR data a priori leads to a mean that is about one standard deviation away from the expected 
mean of zero.  This provides further evidence of the absolute necessity of including bias removal 
as part of the assimilation system.  Next, Figure 2 shows global maps of the variance of the 
innovations sequence after normalization with its expected standard deviation.  The global 
average variance of the normalized innovations sequence is around 0.7; it thus falls short of the 
expected unit variance.  Moreover, there are strong variations across the globe.  The innovations 
variance slightly exceeds one in the eastern half of North America, and it is closer to two in mid-
latitude Eurasia.  For the rest of the globe, the innovations show too small a variance.  The 
imperfect variance is explained in part by nonlinearities in the model and in the observation 
operator.  It also relates, however, to an imperfect representation of the model error 
characteristics in the ensemble generation.  It is probably not a coincidence that the variance 
deficiency is prominent in relatively dry climates, and that excess variance is found in wetter 
climates.  Therefore, it might be possible to use the innovations variance to tune filter parameters 
(such as model error variances) before repeating the assimilation integration.  Alternatively, 
adaptive tuning methods could be tried (Dee, 1995). 
 
 

 
Figure 3.  Time-average seasonal cycle of (Top group of lines, left axis) surface and (Bottom 
group of lines, right axis) root zone soil moisture at a representative location in Illinois (89.5W, 
38.6N):  (Light gray) GSMDB, (Dark grey with circles) SMMR, (Black solid) model, (Black 
dashed) EnKF (from Reichle and Koster, 2004b). 
 
 
Without any such tuning of the filter, we will now show that the assimilation of SMMR retrievals 
already yields modest but significant improvements in the estimation of soil moisture.  For this 
validation, we use in situ observations from up to 77 locations in North America and Eurasia that 
have sufficient GSMDB and SMMR data for our analysis (Reichle et al., 2004).  First, Figure 3 



shows the 1979-87 average seasonal cycles for surface and root zone soil moisture at one 
representative location in Illinois.  For clarity, we adjusted the annual mean of the SMMR, model, 
and assimilation data to match the annual mean of the GSMDB data.  At this location, the phase 
of the model data lags the phase of the ground data by about one month.  The SMMR data, on the 
other hand, show a better phase agreement with the ground data than the model, although the 
SMMR data are not available year-round because the vegetation is too dense in the summer 
months.  SMMR data are also only available for the surface layer.  The assimilation of just a few 
months of SMMR surface soil moisture retrievals per year shifts the spring dry-down and fall 
wet-up by about one half month towards the phase of the annual cycle of the ground data.  Most 
importantly, this improvement applies equally to the root zone. 
 
 

 N SMMR Model EnKF 
Sfmc 77 .44±.03 .43±.03 .50±.03 
Sfmc anomalies 66 .32±.03 .36±.03 .43±.03 
Rzmc 59 - .46±.03 .50±.03 
Rzmc anomalies 33 - .32±.05 .35±.05 

  
Table 1.  Average time series correlation coefficients with GSMDB surface and root zone soil 
moisture content (sfmc and rzmc, respectively) for SMMR, model, and assimilation estimates 
with 95% confidence intervals.  N denotes the number of locations with sufficient data. 
 
 
Table 1 provides a stronger, global-scale demonstration of improvement associated with 
assimilation.  Listed are time series correlation coefficients (including 95% confidence intervals) 
computed from monthly mean time series and averaged over all locations with sufficient data in 
North America and Eurasia.  For surface soil moisture, the satellite and model data show about 
the same skill in reproducing the in situ data, with correlation coefficients of 0.44 and 0.43, 
respectively (0.32 and 0.36, respectively, for anomalies.)  Merging the SMMR retrievals with the 
model through data assimilation leads to a statistically significant increase in the correlation 
coefficients to 0.50 for surface soil moisture (0.43 for anomalies).  Note that even if the 
assimilation data were perfect, correlations could still be much less than one due to the mismatch 
of scale between the assimilation data and the GSMDB data.  In other words, the seemingly 
modest increase of correlation to 0.50 could be quite large relative to the maximum increase 
possible given the point-scale character of the validation data.  In any case, the increases seen are 
statistically significant, suggesting that the satellite and model data contain some independent 
information that the assimilation algorithm is able to combine into superior estimates. 
 
The model’s skill for root zone soil moisture is comparable to its skill at the surface (Table 1), 
with correlation coefficients of 0.46 (0.32 for anomalies).  Merging the surface information 
contained in the SMMR retrievals via data assimilation also leads to a small increase in the 
correlation coefficients for the root zone soil moisture to 0.50 (0.35 for anomalies).  While going 
in the right direction, the improvement in the root zone is not statistically significant.  
Improvement of root zone soil moisture through assimilation of surface retrievals hinges on many 
factors, making it difficult to pinpoint a strategy for refining the assimilation system.  Again, the 
ground measurements taken at point scale must be a reasonable representation of root zone soil 
moisture at the catchment scale, or else our measure of improvement is invalidated. (This 
argument applies equally to the surface layer.)  Second, the model must accurately describe the 
propagation of the surface information into the deeper soil.  Third, the model error parameters of 



the assimilation system that co-determine the strength of the coupling between the surface and the 
root zone must also be realistic.  Unfortunately, it is currently impossible to test these 
assumptions at the global scale with any confidence.  Again, though, despite these limitations, the 
assimilation of SMMR retrievals does yield improved estimates of soil moisture conditions, with 
at least a suggestion of an improvement in the root zone data. 
 
 
Conclusions 
 
Since April 2004, the NASA-GMAO seasonal forecasting system relies on land initial conditions 
that are derived from observations of precipitation and radiation.  Along with a major change in 
atmospheric initialization, the new land initialization method has a significant impact on sub-
seasonal forecasts of screen-level temperature and precipitation at mid-latitudes during summer.   
 
The global assimilation of SMMR satellite retrievals of soil moisture into the NASA Catchment 
land surface model using the EnKF was also examined.  We find that the assimilation of the 
satellite information improves the average annual cycle of surface and root zone soil moisture at 
locations with GSMDB ground data.  The assimilation also produces small but significant 
improvements in time series correlations with ground data for surface soil moisture and its 
anomalies.  Correlations for root zone soil moisture are also improved, though not with statistical 
significance.  
 
Global analysis of the innovations sequence reveals that the assimilation algorithm only partially 
performs within its underlying assumptions.  While the innovations have the expected zero mean 
property by design, they typically have too much or too little variance in different parts of the 
globe.  Such a deficiency is not surprising for a first application of a global assimilation system to 
satellite data for a state (soil moisture) controlled by poorly understood non-linear processes.  In 
future work, information from the innovations sequence can be used to design spatially 
distributed model error parameters, potentially in an adaptive framework, that might improve the 
performance of the assimilation algorithm.  Finally, modern-era data such as C-band retrievals 
from the Advanced Microwave Scanning Radiometer for the Earth Observing System, L-band 
retrievals from the planned Hydrospheric States mission (Entekhabi et al., 2004), and satellite-
supported surface meteorological observations of higher quality should further our knowledge of 
global soil moisture fields. 
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